Disentangling North Atlantic Ocean–Atmosphere Coupling Using Circulation Analogs

Author:

Patterson Matthew1ORCID,O’Reilly Christopher2,Robson Jon23,Woollings Tim1

Affiliation:

1. a Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

2. b Department of Meteorology, University of Reading, Reading, United Kingdom

3. c National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Abstract

Abstract The coupled nature of the ocean–atmosphere system frequently makes understanding the direction of causality difficult in ocean–atmosphere interactions. This study presents a method to decompose turbulent surface heat fluxes into a component which is directly forced by atmospheric circulation and a residual which is assumed to be primarily “ocean-forced.” This method is applied to the North Atlantic in a 500-yr preindustrial control run using the Met Office’s HadGEM3-GC3.1-MM model. The method shows that atmospheric circulation dominates interannual to decadal heat flux variability in the Labrador Sea, in contrast to the Gulf Stream where the ocean primarily drives the variability. An empirical orthogonal function analysis identifies several residual heat flux modes associated with variations in ocean circulation. The first of these modes is characterized by the ocean warming the atmosphere along the Gulf Stream and North Atlantic Current and the second by a dipole of cooling in the western subtropical North Atlantic and warming in the subpolar North Atlantic. Lead–lag regression analysis suggests that atmospheric circulation anomalies in prior years partly drive the ocean heat flux modes; however, there is no significant atmospheric circulation response in years following the peaks of the modes. Overall, the heat flux dynamical decomposition method provides a useful way to separate the effects of the ocean and atmosphere on heat flux and could be applied to other ocean basins and to either models or reanalysis datasets. Significance Statement Variability of the ocean affects atmospheric circulation and provides a source of long-term predictability for surface weather. However, the atmosphere also affects the ocean. This makes the separation of cause and effect in such atmosphere–ocean interactions difficult. This paper introduces a method to separate “turbulent heat fluxes,” the primary means by which the atmosphere and ocean influence one another, into a component driven by atmospheric variability and a component which is primarily related to ocean variability. The method is tested by applying it to a climate model simulation and is able to identify regions in which the exchange of heat between the ocean and atmosphere is dominated by atmospheric variability and regions which are dominated by the ocean.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Reference53 articles.

1. Surface flux variability over the North Pacific and North Atlantic Oceans;Alexander, M. A.,1997

2. The role of Ekman ocean heat transport in the Northern Hemisphere response to ENSO;Alexander, M. A.,2008

3. Historical simulations with HadGEM3-GC3.1 for CMIP6;Andrews, M. B.,2020

4. On anomalous ocean heat transport toward the Arctic and associated climate predictability;Årthun, M.,2016

5. Skillful prediction of northern climate provided by the ocean;Årthun, M.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3