The Effect of Wind Stress on Seasonal Sea-Level Change on the Northwestern European Shelf

Author:

Hermans Tim H. J.12,Katsman Caroline A.3,Camargo Carolina M. L.12,Garner Gregory G.45,Kopp Robert E.45,Slangen Aimée B. A.1

Affiliation:

1. a Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, Netherlands

2. b Department of Geosciences and Remote Sensing, Delft University of Technology, Delft, Netherlands

3. c Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands

4. d Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey

5. e Rutgers Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Abstract

Abstract Projections of relative sea level change (RSLC) are commonly reported at an annual mean basis. The seasonality of RSLC is often not considered, even though it may modulate the impacts of annual mean RSLC. Here, we study seasonal differences in twenty-first-century ocean dynamic sea level change (DSLC; 2081–2100 minus 1995–2014) on the Northwestern European Shelf (NWES) and their drivers, using an ensemble of 33 CMIP6 models complemented with experiments performed with a regional ocean model. For the high-end emissions scenario SSP5–8.5, we find substantial seasonal differences in ensemble mean DSLC, especially in the southeastern North Sea. For example, at Esbjerg (Denmark), winter mean DSLC is on average 8.4 cm higher than summer mean DSLC. Along all coasts on the NWES, DSLC is higher in winter and spring than in summer and autumn. For the low-end emissions scenario SSP1–2.6, these seasonal differences are smaller. Our experiments indicate that the changes in winter and summer sea level anomalies are mainly driven by regional changes in wind stress anomalies, which are generally southwesterly and east-northeasterly over the NWES, respectively. In spring and autumn, regional wind stress changes play a smaller role. We also show that CMIP6 models not resolving currents through the English Channel cannot accurately simulate the effect of seasonal wind stress changes on the NWES. Our results imply that using projections of annual mean RSLC may underestimate the projected changes in extreme coastal sea levels in spring and winter. Additionally, changes in the seasonal sea level cycle may affect groundwater dynamics and the inundation characteristics of intertidal ecosystems.

Funder

Horizon 2020, PROTECT

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3