Remote influence of the interannual variability of the Australian summer monsoon on wintertime climate in East Asia and the western North Pacific

Author:

Sekizawa Shion1,Nakamura Hisashi1,Kosaka Yu1

Affiliation:

1. a Research Center for Advanced Science and Technology, the University of Tokyo, Tokyo, Japan

Abstract

AbstractAnomalous convective activity in the Tropics forced by sea surface temperature (SST) variability exerts significant remote influence that provides a basis for seasonal prediction in the extratropics. In austral summer convective activity exhibits pronounced interannual variability over northern Australia (NAUS), which is, however, unlikely forced by SST anomalies but essentially a manifestation of internal variability of the Australian summer monsoon (AUSM) system. Based on observational data, the present study reveals its significant remote impacts on the wintertime climate in East Asia and the western North Pacific. The anomalous AUSM excites the Western Pacific (WP) pattern, as confirmed through an atmospheric general circulation model experiment. Through this cross-equatorial teleconnection, the enhanced AUSM leads to the strengthening of the East Asian winter monsoon with a colder winter over the Korean Peninsula and western Japan and reduced precipitation over southern China. The Okhotsk sea-ice extent decreases under warm anomalies and weakened offshore winds. The weakened AUSM leads to the same anomalies but with the opposite polarities. Our observational data analysis and numerical experiments reveal that the WP-like anomalies are excited by the propagation of stationary Rossby waves generated by anomalous upper-level divergent wind from NAUS that extends into the Northern Hemisphere subtropical jet. The climatological Hadley circulation is essential in this process. The concomitant anomalous diabatic heating over East Asia and feedback forcing by transient eddies along the Pacific stormtrack act to further amplify the WP-like response.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3