Skillful Long-Lead Seasonal Predictions in the Summertime Northern Hemisphere Midlatitudes

Author:

Lin Hai1ORCID,Muncaster Ryan1,Derome Jacques2,Merryfield William J.3,Diro Gulilat4

Affiliation:

1. a Recherche en Prévision Numérique Atmosphérique, Environment and Climate Change Canada, Montreal, Quebec, Canada

2. b Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

3. c Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada

4. d Canadian Centre for Meteorological and Environmental Prediction, Environment and Climate Change Canada, Montreal, Quebec, Canada

Abstract

Abstract In contrast to boreal winter when extratropical seasonal predictions benefit greatly from ENSO-related teleconnections, our understanding of forecast skill and sources of predictability in summer is limited. Based on 40 years of hindcasts of the Canadian Seasonal to Interannual Prediction System, version 3 (CanSIPSv3), this study shows that predictions for the Northern Hemisphere summer surface air temperature are skillful more than 6 months in advance in several midlatitude regions, including eastern Europe–Middle East, central Siberia–Mongolia–North China, and the western United States. These midlatitude regions of statistically significant predictive skill appear to be connected to each other through an upper-tropospheric circumglobal wave train. Although a large part of the forecast skill for the surface air temperature and 500-hPa geopotential height is attributable to the linear trend associated with global warming, there is significant long-lead seasonal forecast skill related to interannual variability. Two additional idealized hindcast experiments are performed to help shed light on sources of the long-lead forecast skill using one of the CanSIPSv3 models and its uncoupled version. It is found that tropical ENSO-related sea surface temperature (SST) anomalies contribute to the forecast skill in the western United States, while land surface conditions in winter, including snow cover and soil moisture, in the Siberian and western U.S. regions have a delayed or long-lasting impact on the atmosphere, which leads to summer forecast skill in these regions. This implies that improving land surface initial conditions and model representation of land surface processes is crucial for the further development of a seasonal forecasting system. Significance Statement Useful seasonal predictions in the boreal summer midlatitude regions are of great value. In this study, we show that predictions for the boreal summer season are skillful more than 6 months in advance in several midlatitude regions, including eastern Europe–Middle East, central Siberia–Mongolia–North China, and the western United States. The forecast skill in these regions is associated with a circumglobal teleconnection atmospheric circulation pattern. Sources of the long-lead forecast skill include the global warming–related trend and anomalies in the ocean and land surface initial conditions. It is found that the wintertime snow cover and soil moisture in the Siberian and western U.S. regions have a delayed or long-lasting impact on the atmosphere, which leads to summer forecast skill.

Publisher

American Meteorological Society

Reference56 articles.

1. Predictability and forecast skill in NMME;Becker, E.,2014

2. A decade of the North American Multimodel Ensemble (NMME): Research, application, and future directions;Becker, E. J.,2022

3. The Northern Hemisphere circumglobal teleconnection in a seasonal forecast model and its relationship to European summer forecast skill;Beverley, J. D.,2019

4. Climate trends in a seasonal forecasting system;Boer, G.,2009

5. Summary verification measures and their interpretation for ensemble forecasts;Bradley, A. A.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3