Variations of Summertime SSTA Independent of ENSO in the Maritime Continent and Their Possible Impacts on Rainfall in the Asian–Australian Monsoon Region

Author:

Zhu Jing1,Guan Zhaoyong1,Wang Xudong2

Affiliation:

1. a Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, China

2. b Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Abstract

Abstract The sea surface temperature anomalies (SSTA) in the Maritime Continent (MC) region are mainly related to local variability, ENSO, and the Indian Ocean dipole. Using the reanalysis data from NOAA and NCEP–NCAR, by employing the empirical orthogonal function (EOF) analysis, we have explored the principal mode of ENSO-independent summertime SSTA in the MC and its associations with regional climate anomalies. After ENSO signals have been removed, the leading mode of SSTA in the MC exhibits a uniformly signed pattern, which mainly varies on an interannual time scale. The maintenance mechanisms of the ENSO-independent SSTA are different in different subregions, especially over the region south of Java and the tropical northwestern Pacific. When the time coefficient of the first leading EOF mode (EOF1) is positive, warmer SSTAs are observed in the area south of Java. The oceanic dynamic heating there facilitates the warmer SSTA. Thus, the Gill-type response of the atmosphere is found over the region south of Java. The diabatic cooling in the atmosphere is dominant over the tropical northwestern Pacific where the warmer SSTA is maintained by the absorption of solar radiation due to less cloud cover there. A tilted vertical circulation is hence formed, linking the tropical southeastern Indian Ocean with the tropical northwestern Pacific. The anomalous circulations in the Asian–Australian monsoon region are affected by this ENSO-independent SSTA mode, resulting in decreased summer rainfall anomaly in the region near the southeast coast of China and increased winter precipitation anomaly over the extratropical region of Australia.

Funder

National Key Scientific Instrument and Equipment Development Projects of China

Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference70 articles.

1. The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans;Alexander, M. A.,2002

2. A look at the relationship between the ENSO and the Indian Ocean dipole;Ashok, K.,2003a

3. Influence of the Indian Ocean dipole on the Australian winter rainfall;Ashok, K.,2003b

4. El Niño Modoki and its possible teleconnection;Ashok, K.,2007

5. Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 11–15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3