Centennial-scale variability of terrestrial near-surface wind speed over China from reanalysis

Author:

Shen Cheng1,Zha Jinlin23,Wu Jian3,Zhao Deming2

Affiliation:

1. 1 Gaochun Meteorological Bureau, Nanjing, 211300, People’s Republic of China

2. 2 CAS Key Laboratory of Regional Climate and Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, People’s Republic of China

3. 3 Key Laboratory of Atmospheric Environment and Processes in the Boundary Layer over the Low-Latitude Plateau Region, Department of Atmospheric Science, Yunnan University, Kunming 650091, People’s Republic of China

Abstract

AbstractInvestigations of variations and causes of near-surface wind speed (NWS) further understanding of the atmospheric changes and improve the ability of climate analysis and projections. NWS varies on multiple temporal scales; however, the centennial-scale variability in NWS and associated causes over China remains unknown. In this study, we employ the European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth century reanalysis (ERA-20C) to study the centennial-scale changes in NWS from 1900–2010. Meanwhile, a forward stepwise regression algorithm is used to reveal the relationships between NWS and large-scale ocean-atmosphere circulations. The results show three unique periods in annual mean NWS over China from 1900–2010. The annual mean NWS displayed a decreasing trend of -0.87% decade-1 and -11.75% decade-1 from 1900–1925 and 1957–2010, respectively, which were caused by the decreases in the days with strong winds, with trends of -6.64 and -4.66 days decade-1, respectively. The annual mean NWS showed an upward trend of 55.47% decade-1 from 1926–1956, which was caused by increases in the days with moderate (0.43 days decade-1) and strong winds (23.55 days decade-1). The reconstructed wind speeds based on forward stepwise regression algorithm matched well with the original wind speeds; therefore, the decadal changes in NWS over China at centennial-scale were mainly induced by large-scale ocean-atmosphere circulations, with the total explanation power of 66%. The strongest explanation power was found in winter (74%), and the weakest explanation power was found in summer (46%).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3