On the Generation of Weddell Sea Polynyas in a High-Resolution Earth System Model

Author:

Kurtakoti Prajvala123,Veneziani Milena2,Stössel Achim3,Weijer Wilbert4,Maltrud Mathew2

Affiliation:

1. a Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico

2. b Fluid Dynamics and Solid Mechanics (T-3), Los Alamos National Laboratory, Los Alamos, New Mexico

3. c Department of Oceanography, Texas A&M University, College Station, Texas

4. d Computational Physics and Methods (CCS-2), Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract

AbstractLarger Weddell Sea polynyas (WSPs), differentiated in this study from the smaller Maud Rise Polynyas (MRPs) that form to the east of the prime meridian in the proximity of the Maud Rise seamount, have last been observed in the 1970s. We investigate WSPs that grow realistically out of MRPs in a high-resolution preindustrial simulation with the Energy Exascale Earth System Model, version 0.1. The formation of MRPs requires high resolution to simulate the detailed flow around Maud Rise, whereas the realistic formation of WSPs requires a model to produce MRPs. Furthermore, WSPs tend to follow periods of a prolonged buildup of a heat reservoir at depth and weakly negative wind stress curl in association with the core of the Southern Hemisphere westerlies at an anomalously northern position. While this scenario also leads to drier conditions over the central Weddell Sea, which some literature claims to be a necessary condition for the formation of WSPs, our model results indicate that open-ocean polynyas do not occur during periods of weakly negative wind stress curl despite drier atmospheric conditions. Our study supports the hypothesis noted in earlier studies that a shift from a weakly negative to a strongly negative wind stress curl over the Weddell Sea is a prerequisite for WSPs to form, together with a large heat reservoir at depth. However, the ultimate trigger is a pronounced MRP, whose associated convection creates high surface salinity anomalies that propagate westward with the flow of the Weddell Gyre. If large enough, these anomalies trigger the formation of a WSP and a pulse of newly formed Antarctic Bottom Water.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3