Elements of the Dynamical Response to Climate Change over the Mediterranean

Author:

Tuel Alexandre1,O’Gorman Paul A.2,Eltahir Elfatih A. B.1

Affiliation:

1. a Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts

2. b Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

AbstractFuture climate simulations indicate that the Mediterranean Basin will experience large low-level circulation changes during winter, characterized by a strong anomalous ridge that drives a regional precipitation decline. Previous research highlighted how shifts in stationary wave structure and the atmospheric response to reduced warming of the Mediterranean Sea relative to land could explain the development of this anomalous pressure high. Here, we expand on these results and provide new arguments for why and how the Mediterranean is projected to experience large circulation changes during winter. First, we find that zonal asymmetries in the vertical structure of stationary waves are important to explain the enhanced circulation response in the region and that these asymmetries are related through the external mode to the vertical structure of the mean zonal wind. Second, in winter, the Mediterranean is located just to the north of the Hadley cell edge and consequently is relatively free of large-scale descent; together with low near-surface static stability above the sea, this condition allows the weaker warming trend above the sea to propagate to the low troposphere and trigger a major circulation response. During summer, however, remotely forced descent and strong static stability prevent the cooling anomaly from expanding upward. Most of the intermodel scatter in the projected low-level circulation response in winter is related to the spread in upper-tropospheric dynamical trends. Importantly, because climate models exhibit too much vertical coherence over the Mediterranean, they likely overestimate the sensitivity of Mediterranean near-surface circulation to large-scale dynamical changes.

Funder

Université Mohamed VI Polytechnique

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3