Linking Large-Scale Double-ITCZ Bias to Local-Scale Drizzling Bias in Climate Models

Author:

Zhou Wenyu1,Leung L. Ruby1,Lu Jian1

Affiliation:

1. a Pacific Northwest National Laboratory, Richland, Washington

Abstract

Abstract Tropical precipitation in climate models presents significant biases in both the large-scale pattern (i.e., double intertropical convergence zone bias) and local-scale characteristics (i.e., drizzling bias with too frequent drizzle/convection and reduced occurrences of no and heavy precipitation). By untangling the coupled system and analyzing the biases in precipitation, cloud, and radiation, this study shows that local-scale drizzling bias in atmospheric models can lead to large-scale double-ITCZ bias in coupled models by inducing convective-regime-dependent biases in precipitation and cloud radiative effects (CRE). The double-ITCZ bias consists of a hemispherically asymmetric component that arises from the asymmetric SST bias and a nearly symmetric component that exists in atmospheric models without the SST bias. By increasing light rain but reducing heavy rain, local-scale drizzling bias induces positive (negative) precipitation bias in the moderate (strong) convective regime, leading to the nearly symmetric wet bias in atmospheric models. By affecting the cloud profile, local-scale drizzling bias induces positive (negative) CRE bias in the stratocumulus (convective) regime in atmospheric models. Because the stratocumulus (convective) region is climatologically more pronounced in the southern (northern) tropics, the CRE bias is deemed to be hemispherically asymmetric and drives warm and wet (cold and dry) biases in the southern (northern) tropics when coupled to ocean. Our results suggest that correcting local-scale drizzling bias is critical for fixing large-scale double-ITCZ bias. The drizzling and double-ITCZ biases are not alleviated in models with mesoscale (0.25°–0.5°) or even storm-resolving (∼3 km) resolution, implying that either large-eddy simulation or fundamental improvement in small-scale subgrid parameterizations is needed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference58 articles.

1. Relation of the double-ITCZ bias to the atmospheric energy budget in climate models;Adam, O.,2016

2. Regional and seasonal variations of the double-ITCZ bias in CMIP5 models;Adam, O.,2018

3. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation;Adler, R. F.,2018

4. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies;Ashouri, H.,2015

5. Balaguru, K., and Coauthors, 2020: Characterizing tropical cyclones in the Energy Exascale Earth System model version 1. J. Adv. Model. Earth Syst., 12, e2019MS002024, https://doi.org/10.1029/2019MS002024.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3