Subseasonal Temporal Clustering of Extreme Precipitation in the Northern Hemisphere: Regionalization and Physical Drivers

Author:

Tuel Alexandre12ORCID,Martius Olivia123

Affiliation:

1. a Institute of Geography, University of Bern, Bern, Switzerland

2. b Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

3. c Mobiliar Laboratory for Natural Risks, University of Bern, Bern, Switzerland

Abstract

Abstract Temporal clustering of extreme precipitation (TCEP) at subseasonal time scales often results in major impacts on humans and ecosystems. Assessment and mitigation of the risk of such events requires characterization of their weather/climate drivers and their spatial dependence. Here, we introduce a regionalization method that identifies coherent regions in which the likelihood of subseasonal TCEP exhibits similar dependence to large-scale dynamics. We apply this method to each season in the Northern Hemisphere using ERA5 reanalysis data. The analysis yields spatially coherent regions, primarily at high latitudes and along the eastern margins of ocean basins. We analyze the large-scale and synoptic conditions associated with TCEP in several of the identified regions, in light of three key ingredients: lifting, moisture availability, and persistence in synoptic conditions. We find that TCEP is often directly related to distinct cyclone and blocking frequency anomalies and upper-level wave patterns. Blocking and associated Rossby wave breaking are particularly relevant at high latitudes and midlatitudes. At upper levels, meridional wave patterns dominate; however, in western Europe and parts of North America, TCEP is sometimes associated with zonally extended wave patterns. The flow features associated with TCEP in the eastern Pacific and eastern Atlantic Oceans exhibit similarities. For some regions, moisture flux anomalies are present during clustering episodes whereas in others forced lifting alone is sufficient to trigger heavy precipitation. Our results provide new information on the dynamics and spatial dependence of TCEP that may be relevant for the subseasonal prediction of clustering episodes.

Funder

snsf

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3