Implied Heat Transport from CERES Data: Direct Radiative Effect of Clouds on Regional Patterns and Hemispheric Symmetry

Author:

Pearce F. A.1,Bodas-Salcedo A.1

Affiliation:

1. a Met Office Hadley Centre, Exeter, United Kingdom

Abstract

Abstract We calculate the implied horizontal heat transport due to the spatial anomalies of radiative fluxes at the top of the atmosphere (TOA). The regional patterns of implied heat transport for different components of the TOA fluxes are calculated by solving the Poisson equation with the flux components as source terms. The shortwave (SW) part of the spectrum governs the spatial patterns of the total implied heat transport. Using the cloud radiative effect (CRE) as source term, we show that the direct effect of clouds is to reduce the poleward heat transport in the majority of the Northern Hemisphere and at high southern latitudes. Clouds flatten the gradients of the clear-sky energy flux potential and hence reduce the implied heat transport with respect to clear skies. Clouds reduce the implied cross-equatorial heat transport with respect to clear sky through changes in the SW part of the spectrum. It changes from 0.83 PW in clear sky to −0.01 PW in all sky, equivalent to the hemispheric albedo symmetry reported in previous studies. We investigate hemispheric symmetry by introducing a metric that measures the symmetry of implied meridional heat transports at all latitudes. The direct effect of clouds is to increase the symmetry in the implied heat transport, and this is achieved through an increase in symmetry in the SW part of the spectrum in the tropics. Whether this is trivial or the result of a fundamental control in the climate system is still an open question.

Funder

Government of the United Kingdom

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference57 articles.

1. Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ;Adam, O.,2016

2. Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion;Armour, K. C.,2019

3. Evaluation of hemispheric asymmetries in marine cloud radiative properties;Bender, F. A.-M.,2017

4. Energetic constraints on the position of the intertropical convergence zone;Bischoff, T.,2014

5. Evaluation of the surface radiation budget in the atmospheric component of the Hadley Centre Global Environmental Model (HadGEM1);Bodas-Salcedo, A.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3