Exploring North Atlantic and North Pacific Decadal Climate Prediction Using Self-Organizing Maps

Author:

Gu Qinxue1,Gervais Melissa123

Affiliation:

1. a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. b Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, Pennsylvania

3. c Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Abstract

AbstractDecadal climate prediction can provide invaluable information for decisions made by government agencies and industry. Modes of internal variability of the ocean play an important role in determining the climate on decadal time scales. This study explores the possibility of using self-organizing maps (SOMs) to identify decadal climate variability, measure theoretical decadal predictability, and conduct decadal predictions of internal climate variability within a long control simulation. SOM is applied to an 11-yr running-mean winter sea surface temperature (SST) in the North Pacific and North Atlantic Oceans within the Community Earth System Model 1850 preindustrial simulation to identify patterns of internal variability in SSTs. Transition probability tables are calculated to identify preferred paths through the SOM with time. Results show both persistence and preferred evolutions of SST depending on the initial SST pattern. This method also provides a measure of the predictability of these SST patterns, with the North Atlantic being predictable at longer lead times than the North Pacific. In addition, decadal SST predictions using persistence, a first-order Markov chain, and lagged transition probabilities are conducted. The lagged transition probability predictions have a reemergence of prediction skill around lag 15 for both domains. Although the prediction skill is very low, it does imply that the SOM has the ability to predict some aspects of the internal variability of the system beyond 10 years.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3