Sensitivity of MPI-ESM Sea Level Projections to Its Ocean Spatial Resolution

Author:

Wickramage Chathurika1ORCID,Köhl Armin1,Jungclaus Johann2,Stammer Detlef1

Affiliation:

1. a Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany

2. b Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

Abstract The dependence of future regional sea level changes on ocean model resolution is investigated based on Max Planck Institute Earth System Model (MPI-ESM) simulations with varying spatial resolution, ranging from low resolution (LR), high resolution (HR), to eddy-rich (ER) resolution. Each run was driven by the shared socioeconomic pathway (SSP) 5-8.5 (fossil-fueled development) forcing. For each run the dynamic sea level (DSL) changes are evaluated by comparing the time mean of the SSP5-8.5 climate change scenario for the years 2080–99 to the time mean of the historical simulation for the years 1995–2014. Respective results indicate that each run reproduces previously identified large-scale DSL change patterns. However, substantial sensitivity of the projected DSL changes can be found on a regional to local scale with respect to model resolution. In comparison to models with parameterized eddies (HR and LR), enhanced sea level changes are found in the North Atlantic subtropical region, the Kuroshio region, and the Arctic Ocean in the model version capturing mesoscale processes (ER). Smaller yet still significant sea level changes can be found in the Southern Ocean and the North Atlantic subpolar region. These sea level changes are associated with changes in the regional circulation. Our study suggests that low-resolution sea level projections should be interpreted with care in regions where major differences are revealed here, particularly in eddy active regions such as the Kuroshio, Antarctic Circumpolar Current, Gulf Stream, and East Australian Current. Significance Statement Sea level change is expected to be more realistic when mesoscale processes are explicitly resolved in climate models. However, century-long simulations with eddy-resolving models are computationally expensive. Therefore, current sea level projections are based on climate models in which ocean eddies are parameterized. The representation of sea level by these models considerably differs from actual observations, particularly in the eddy-rich regions such as the Southern Ocean and the western boundary currents, implying erroneous ocean circulation that affects the sea level projections. Taking this into account, we review the sea level change pattern in a climate model with featuring an eddy-rich ocean model and compare the results to state-of-the-art coarser-resolution versions of the same model. We found substantial DSL differences in the global ocean between the different resolutions. Relatively small-scale ocean eddies can hence have profound large-scale effects on the projected sea level which may affect our understanding of future sea level change as well as the planning of future investments to adapt to climate change around the world.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference108 articles.

1. Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning;Böning, C. W.,2006

2. The response of the Antarctic Circumpolar Current to recent climate change;Böning, C. W.,2008

3. The effect of windstress change on future sea level change in the Southern Ocean;Bouttes, N.,2012

4. The drivers of projected North Atlantic sea level change;Bouttes, N.,2014

5. Observed fingerprint of a weakening Atlantic Ocean overturning circulation;Caesar, L.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3