The Role of Anthropogenic Aerosol Forcing in the 1850–1985 Strengthening of the AMOC in CMIP6 Historical Simulations

Author:

Robson Jon1,Menary Matthew B.2,Sutton Rowan T.1,Mecking Jenny3,Gregory Jonathan M.14,Jones Colin5,Sinha Bablu3,Stevens David P.6,Wilcox Laura J.1

Affiliation:

1. a National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

2. b LOCEAN, Sorbonne Université, Paris, France

3. c National Oceanography Centre, Southampton, United Kingdom

4. d Met Office Hadley Centre, Met Office, Exeter, United Kingdom

5. e National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom

6. f Centre for Ocean and Atmospheric Sciences, School of Mathematics, University of East Anglia, Norwich, United Kingdom

Abstract

Abstract Previous work has shown that anthropogenic aerosol (AA) forcing drives a strengthening in the Atlantic meridional overturning circulation (AMOC) in CMIP6 historical simulations over 1850–1985, but the mechanisms have not been fully understood. Across CMIP6 models, it is shown that there is a strong correlation between surface heat loss over the subpolar North Atlantic (SPNA) and the forced strengthening of the AMOC. Despite the link to AA forcing, the AMOC response is not strongly related to the contribution of anomalous downwelling surface shortwave radiation to SPNA heat loss. Rather, the spread in AMOC response is primarily due to the spread in turbulent heat loss. We hypothesize that turbulent heat loss is larger in models with strong AA forcing because the air advected over the ocean is colder and drier, in turn because of greater AA-forced cooling over the continents upwind, especially North America. The strengthening of the AMOC also feeds back on itself positively in two distinct ways: by raising the sea surface temperature and hence further increasing turbulent heat loss in the SPNA, and by increasing the sea surface density across the SPNA due to increased northward transport of saline water. A comparison of key indices suggests that the AMOC response in models with strong AA forcing is not likely to be consistent with observations.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3