Comparison of Ensemble-MOS Methods Using GFS Reforecasts

Author:

Wilks Daniel S.1,Hamill Thomas M.2

Affiliation:

1. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

2. NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract Three recently proposed and promising methods for postprocessing ensemble forecasts based on their historical error characteristics (i.e., ensemble-model output statistics methods) are compared using a multidecadal reforecast dataset. Logistic regressions and nonhomogeneous Gaussian regressions are generally preferred for daily temperature, and for medium-range (6–10 and 8–14 day) temperature and precipitation forecasts. However, the better sharpness of medium-range ensemble-dressing forecasts sometimes yields the best Brier scores even though their calibration is somewhat worse. Using the long (15 or 25 yr) training samples that are available with these reforecasts improves the accuracy and skill of these probabilistic forecasts to levels that are approximately equivalent to gains of 1 day of lead time, relative to using short (1 or 2 yr) training samples.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 206 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3