Automated Processing of Sea Surface Images for the Determination of Whitecap Coverage

Author:

Callaghan Adrian H.1,White Martin1

Affiliation:

1. Department of Earth and Ocean Sciences, National University of Ireland, Galway, Galway, Ireland

Abstract

Abstract Sea surface images have been collected to determine the percentage whitecap coverage (W) since the late 1960s. Image processing methods have changed dramatically since the beginning of whitecap studies. An automated whitecap extraction (AWE) technique has been developed at the National University of Ireland, Galway, that allows images to be analyzed for percentage whitecap coverage without the need of a human analyst. AWE analyzes digital images and determines a suitable threshold with which whitecaps can be separated from unbroken background water. By determining a threshold for each individual image, AWE is suitable for images obtained in conditions of changing ambient illumination. AWE is also suitable to process images that have been taken from both stable and nonstable platforms (such as towers and research vessels, respectively). Using techniques based on derivative analysis, AWE provides an objective method to determine an appropriate threshold for the identification of whitecaps in sea surface images without the need for a human analyst. The automated method allows large numbers of images to be analyzed in a relatively short amount of time. AWE can be used to analyze hundreds of images per individual W data point, which produces more convergent values of W.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3