Availability of High-Quality TRMM Ground Validation Data from Kwajalein, RMI: A Practical Application of the Relative Calibration Adjustment Technique

Author:

Marks David A.1,Wolff David B.1,Silberstein David S.1,Tokay Ali2,Pippitt Jason L.1,Wang Jianxin1

Affiliation:

1. Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

2. Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Abstract

Abstract Since the Tropical Rainfall Measuring Mission (TRMM) satellite launch in November 1997, the TRMM Satellite Validation Office (TSVO) at NASA Goddard Space Flight Center (GSFC) has been performing quality control and estimating rainfall from the KPOL S-band radar at Kwajalein, Republic of the Marshall Islands. Over this period, KPOL has incurred many episodes of calibration and antenna pointing angle uncertainty. To address these issues, the TSVO has applied the relative calibration adjustment (RCA) technique to eight years of KPOL radar data to produce Ground Validation (GV) version 7 products. This application has significantly improved stability in KPOL reflectivity distributions needed for probability matching method (PMM) rain-rate estimation and for comparisons to the TRMM precipitation radar (PR). In years with significant calibration and angle corrections, the statistical improvement in PMM distributions is dramatic. The intent of this paper is to show improved stability in corrected KPOL reflectivity distributions by using the PR as a stable reference. Intermonth fluctuations in mean reflectivity differences between the PR and corrected KPOL are on the order of ±1–2 dB, and interyear mean reflectivity differences fluctuate by approximately ±1 dB. This represents a marked improvement in stability with confidence comparable to the established calibration and uncertainty boundaries of the PR. The practical application of the RCA method has salvaged eight years of radar data that would have otherwise been unusable and has made possible a high-quality database of tropical ocean–based reflectivity measurements and precipitation estimates for the research community.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3