Discontinuity Issues with Radiosonde and Satellite Temperatures in the Australian Region 1979–2006

Author:

Christy John R.1,Norris William B.1

Affiliation:

1. Earth System Science Center, The University of Alabama in Huntsville, Huntsville, Alabama

Abstract

Abstract The temperature records of 28 Australian radiosonde stations were compared with the bulk-layer temperatures of three satellite products of The University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS) for the period 1979–2006. The purpose was to use the satellite data as “reference truth” to quantify the effect of changes in station equipment, software, and operations on the reported upper air temperatures and resulting trends. The products are lower troposphere (LT), midtroposphere (MT), and lower stratosphere (LS). Four periods of significant shifts in temperatures were found in the radiosondes relative to both satellite datasets. In the first two shifts—around 1982/83 and 1987/88—the radiosondes experienced an accumulated LT and MT warming shift of 0.5 K on average. These shifts coincided with equipment changes. If unadjusted for these shifts, the radiosondes report spurious tropospheric warming of almost 0.2 K decade−1. For LS in the first period, there is relative warming but in the second, cooling. If unadjusted, the radiosondes overstate LS cooling by about −0.15 K decade−1. The third (early 1990s) and fourth (1998 LT and MT and 2002 LS) shifts are less robustly connected to changes in the radiosondes. Errors in the construction methodology of the satellite products likely account for at least part of the discrepancies but cannot be attributed with confidence to a specific cause. Having opposite signs in the two periods, the last two discrepancies tend to cancel each other. The net effect of these last two shifts on the overall LT and MT trends of ±0.03 K decade−1 is small.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3