An Analysis of Errors in Drop Size Distribution Retrievals and Rain Bulk Parameters with a UHF Wind Profiling Radar and a Two-Dimensional Video Disdrometer

Author:

Kanofsky Laura1,Chilson Phillip1

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Vertically pointed wind profiling radars can be used to obtain measurements of the underlying drop size distribution (DSD) for a rain event by means of the Doppler velocity spectrum. Precipitation parameters such as rainfall rate, radar reflectivity factor, liquid water content, mass-weighted mean drop diameter, and median volume drop diameter can then be calculated from the retrieved DSD. The DSD retrieval process is complicated by the presence of atmospheric turbulence, vertical ambient air motion, selection of fall speed relationships, and velocity thresholding. In this note, error analysis is presented to quantify the effect of each of those factors on rainfall rate. The error analysis results are then applied to two precipitation events to better interpret the rainfall-rate retrievals. It was found that a large source of error in rain rate is due to unaccounted-for vertical air motion. For example, in stratiform rain with a rainfall rate of R = 10 mm h−1, a mesoscale downdraft of 0.6 m s−1 can result in a 34% underestimation of the estimated value of R. The fall speed relationship selection and source of air density information both caused negligible errors. Errors due to velocity thresholding become more important in the presence of significant contamination near 0 m s−1, such as ground clutter. If particles having an equivalent volume diameter of 0.8 mm and smaller are rejected, rainfall rate errors from −4% to −10% are possible, although these estimates depend on DSD and rainfall rate.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference36 articles.

1. Doppler radar characteristics of precipitation at vertical incidence.;Atlas;Rev. Geophys. Space Phys.,1973

2. Raindrop size-distribution in Hawaiian rains.;Blanchard;J. Atmos. Sci.,1953

3. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment.;Brandes;J. Appl. Meteor.,2002

4. The Oklahoma Mesonet: A technical overview.;Brock;J. Atmos. Oceanic Technol.,1995

5. Instrumental uncertainties in Z–R relations.;Campos;J. Appl. Meteor.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3