Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5

Author:

Frey Richard A.1,Ackerman Steven A.1,Liu Yinghui1,Strabala Kathleen I.1,Zhang Hong1,Key Jeffrey R.1,Wang Xuangi1

Affiliation:

1. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

Abstract Significant improvements have been made to the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask (MOD35 and MYD35) for Collection 5 reprocessing and forward stream data production. Most of the modifications are realized for nighttime scenes where polar and oceanic regions will see marked improvement. For polar night scenes, two new spectral tests using the 7.2-μm water vapor absorption band have been added as well as updates to the 3.9–12- and 11–12-μm cloud tests. More non-MODIS ancillary input data have been added. Land and sea surface temperature maps provide crucial information for mid- and low-level cloud detection and lessen dependence on ocean brightness temperature variability tests. Sun-glint areas are also improved by use of sea surface temperatures to aid in resolving observations with conflicting cloud versus clear-sky signals, where visible and near-infrared (NIR) reflectances are high, but infrared brightness temperatures are relatively warm. Day and night Arctic cloud frequency results are compared to those created by the Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder-Extended (APP-X) algorithm. Day versus night sea surface temperatures derived from MODIS radiances and using only the MODIS cloud mask for cloud screening are contrasted. Frequencies of cloud from sun-glint regions are shown as a function of sun-glint angle to gain a sense of cloud mask quality in those regions. Continuing validation activities are described in Part II of this paper.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference13 articles.

1. Discriminating clear-sky from clouds with MODIS.;Ackerman;J. Geophys. Res.,1998

2. Ackerman, S. A. , and Coauthors, 2006: Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35). 129 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/MOD35:MYD35_ATBD_C005.pdf.].

3. Brown, O., P.Minnett, R.Evans, E.Kearns, K.Kilpatrick, A.Kumar, R.Sikorski, and A.Závody, 1999: Algorithm theoretical basis document. EOS ATBD. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod25.pdf.].

4. The new global operational analysis system at the National Meteorological Center.;Derber;Wea. Forecasting,1991

5. Key, J. R. , 2002: The cloud and surface parameter retrieval (CASPR) system for polar AVHRR user’s guide version 4.0. University of Wisconsin—Madison, 36 pp. [Available online at http://stratus.ssec.wisc.edu/caspr/userman.pdf.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3