Dry Bias in Vaisala RS90 Radiosonde Humidity Profiles over Antarctica

Author:

Rowe Penny M.1,Miloshevich Larry M.2,Turner David D.3,Walden Von P.1

Affiliation:

1. Department of Geography, University of Idaho, Moscow, Idaho

2. National Center for Atmospheric Research, Boulder, Colorado

3. University of Wisconsin—Madison, Madison, Wisconsin

Abstract

Abstract Middle to upper tropospheric humidity plays a large role in determining terrestrial outgoing longwave radiation. Much work has gone into improving the accuracy of humidity measurements made by radiosondes. Some radiosonde humidity sensors experience a dry bias caused by solar heating. During the austral summers of 2002/03 and 2003/04 at Dome C, Antarctica, Vaisala RS90 radiosondes were launched in clear skies at solar zenith angles (SZAs) near 83° and 62°. As part of this field experiment, the Polar Atmospheric Emitted Radiance Interferometer (PAERI) measured downwelling spectral infrared radiance. The radiosonde humidity profiles are used in the simulation of the downwelling radiances. The radiosonde dry bias is then determined by scaling the humidity profile with a height-independent factor to obtain the best agreement between the measured and simulated radiances in microwindows between strong water vapor lines from 530 to 560 cm−1 and near line centers from 1100 to 1300 cm−1. The dry biases, as relative errors in relative humidity, are 8% ± 5% (microwindows; 1σ) and 9% ± 3% (line centers) for SZAs near 83°; they are 20% ± 6% and 24% ± 5% for SZAs near 62°. Assuming solar heating is minimal at SZAs near 83°, the authors remove errors that are unrelated to solar heating and find the solar-radiation dry bias of 9 RS90 radiosondes at SZAs near 62° to be 12% ± 6% (microwindows) and 15% ± 5% (line centers). Systematic errors in the correction are estimated to be 3% and 2% for microwindows and line centers, respectively. These corrections apply to atmospheric pressures between 650 and 200 mb.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference32 articles.

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3