Two Distinct Types of 10-30-day Persistent Heavy Rainfall Events over the Yangtze River Valley

Author:

Cheng Yifeng12,Wang Lu12,Li Tim31

Affiliation:

1. 1 Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environmental Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

2. 2 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

3. 3 International Pacific Research Center, University of Hawaiʻi at Mānoa, Honolulu, USA

Abstract

AbstractLarge-scale circulation anomalies associated with 10-30-day filtered persistent heavy rainfall events (PHREs) over the middle and lower reaches of the Yangtze River Valley (MLYV) in boreal summer for the period of 1961-2017 were investigated. Two distinct types of PHREs were identified based on configurations of anomalies in western Pacific subtropical high (WPSH) and South Asian High (SAH) during the peak wet phase. One type named as PSAH is characterized by eastward extension of the SAH while the other named as NSAH is featured by westward retreat of the SAH, and they both exhibit westward extension of the WPSH. Both types of PHREs are dominated by Mei-yu frontal systems. The lower-level circulation anomalies play a crucial role in initiating rainfall but through different processes. Prior to rainfall occurrence, a strong anticyclonic circulation anomaly is over the western North Pacific (WNP) for the PSAH events and the related southwesterly wind anomaly prevails over the south-eastern China, which advects moisture into the MLYV, moistens the boundary layer, and induces atmospheric convective instability. For the NSAH events, the WNP anticyclonic circulation is weak while a strong northerly wind is observed north of the MLYV. It brings cold air mass southward, favoring initiating frontal rainfall over the MLYV. The formation of upper-level circulation anomalies over the MLYV is primarily due to the shift of anomalous circulations from mid-high latitudes. After the rainfall generation, the precipitation would influence the lower- and upper-level circulation anomalies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3