The Physics of Heat Waves: What Causes Extremely High Summertime Temperatures?

Author:

Zeppetello Lucas R. Vargas1ORCID,Battisti David S.1,Baker Marcia B.2

Affiliation:

1. a Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. b Department of Earth and Space Sciences, University of Washington, Seattle, Washington

Abstract

Abstract We analyze observations and develop a hierarchy of models to understand heat waves—long-lived, high temperature anomalies—and extremely high daily temperatures during summertime in the continental extratropics. Throughout the extratropics, the number of extremely hot days found in the three hottest months is much greater than expected from a random, single-process model. Furthermore, in many locations the temperature skewness switches from negative on daily time scales to positive on monthly time scales (or shifts from positive on daily time scales to higher positive values on monthly time scales) in ways that cannot be explained by averaging alone. These observations motivate a hierarchy of models of the surface energy and moisture budgets that we use to illuminate the physics responsible for daily and monthly averaged temperature variability. Shortwave radiation fluctuations drive much of the variance and the negative skewness found in daily temperature observations. On longer time scales, precipitation-induced soil moisture anomalies are important for temperature variability and account for the shift toward positive skewness in monthly averaged temperature. Our results demonstrate that long-lived heat waves are due to (i) the residence time of soil moisture anomalies and (ii) a nonlinear feedback between temperature and evapotranspiration via the impact of temperature on vapor pressure deficit. For most climates, these two processes give rise to infrequent, long-lived heat waves in response to randomly distributed precipitation forcing. Combined with our results concerning high-frequency variability, extremely hot days are seen to be state-independent filigree driven by shortwave variability acting on top of longer-lived, moisture-driven heat waves.

Funder

tamaki foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3