Predictive Skill Assessment for Land Water Storage in CMIP5 Decadal Hindcasts by a Global Reconstruction of GRACE Satellite Data

Author:

Jensen Laura1,Eicker Annette1,Stacke Tobias2,Dobslaw Henryk3

Affiliation:

1. Geodesy and Geoinformatics, HafenCity University, Hamburg, Germany

2. Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Geesthacht, Germany

3. Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Potsdam, Germany

Abstract

AbstractThe evaluation of decadal climate predictions against observations is crucial for their benefit to stakeholders. While the skill of such forecasts has been verified for several atmospheric variables, land hydrological states such as terrestrial water storage (TWS) have not been extensively investigated yet due to a lack of long observational records. Anomalies of TWS are globally observed with the satellite missions GRACE (2002–2017) and GRACE-FO (since 2018). By means of a GRACE-like reconstruction of TWS available over 41 years, we demonstrate that this data type can be used to evaluate the skill of decadal prediction experiments made available from different Earth system models as part of both CMIP5 and CMIP6. Analysis of correlation and root-mean-square deviation (RMSD) reveals that for the global land average the initialized simulations outperform the historical experiments in the first three forecast years. This predominance originates mainly from equatorial regions where we assume a longer influence of initialization due to longer soil memory times. Evaluated for individual grid cells, the initialization has a largely positive effect on the forecast year 1 TWS states; however, a general grid-scale prediction skill for TWS of more than 2 years could not be identified in this study for CMIP5. First results from decadal hindcasts of three CMIP6 models indicate a predictive skill comparable to CMIP5 for the multimodel mean in general, and a distinct positive influence of the improved soil–hydrology scheme implemented in the MPI-ESM for CMIP6 in particular.

Funder

HafenCity University Hamburg

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3