Change in the Occurrence Frequency of Landfalling and Non-Landfalling Tropical Cyclones over the Northwest Pacific

Author:

Xiao Mingzhong12

Affiliation:

1. a State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China

2. b State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

Abstract

AbstractUnderstanding the tropical cyclone (TC) activity changes in response to climate change is of great importance for disaster mitigation and climate change adaptation. Change in the annual occurrence frequency of landfalling and non-landfalling weak, strong, and super TCs during 1980–2018 was analyzed. Results indicate that the super TCs have been more likely to make landfall in the northwest Pacific since 1980. Using an empirical orthogonal function–based method proposed to decompose the space–time field of TC occurrence into different patterns, the anthropogenic influence on the change in super TC occurrence was detected when the impacts of El Niño–Southern Oscillation (ENSO), the Pacific meridional mode (PMM), and the interdecadal Pacific oscillation (IPO) were separated. Results further show that TCs forming in the sea surface near land (6°–21°N, 130°–137°E) have been more likely to intensify to super TCs in recent years. These intensified TCs tend to favor subsequent landfall, which may be the reason for the increase in landfalling super TCs. The intensification of TC is mainly due to the increase in the intensification rate, which increases with increased sea surface temperature (SST), especially during the stronger wind periods. Along with the change in the occurrence of landfalling super TCs, the landfalling locations of super TCs also changed. For example, western South China, Southeast China, and Japan are facing an increase in landfalling super TCs. The destructiveness of super TCs to these economically developed and highly populated regions is great; more attention therefore should be paid to mitigate TC disasters.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3