Affiliation:
1. a Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Abstract
AbstractThe El Niño–related anomalous western North Pacific anticyclone (WNPAC) shows different latitudinal extensions during the El Niño decaying summer, which determines the moisture transport to different regions and leads to distinct climate impacts over East Asia. It is known that both the north Indian Ocean (NIO) sea surface temperature (SST) and the tropical North Atlantic (TNA) SST can generate a WNPAC in summer. However, the difference between the NIO SST-forced WNPAC and the TNA SST-forced WNPAC has hardly been noted before now. This study shows that the NIO SST warming makes the WNPAC contract southward, whereas the TNA SST warming makes the WNPAC extend northward. The NIO SST warming generates the WNPAC via a Kelvin wave response. Owing to the limited domain of Kelvin wave activity, the Kelvin wave–induced suppressed convection over the western Pacific is confined south of 20°N, resulting in the WNPAC being concentrated in the low latitudes. In contrast, the TNA SST warming generates the WNPAC via a Rossby wave–induced divergence/convergence chain response over the Pacific. The Rossby wave–induced suppressed convection over the central-eastern Pacific north of the equator leads to enhanced convection on its southwest side, which further generates the low-level anomalous divergent winds over the western North Pacific and suppresses convection there. In this process, the suppressed convection over the western North Pacific is pushed more northward, thus producing a WNPAC extending northward. Further study finds that there are good precursors for predicting the WNPAC latitudinal extension based on the El Niño spatial pattern and the NIO/TNA SST intensity in the previous winter and spring.
Publisher
American Meteorological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献