Intraseasonal Soil Moisture–Atmosphere Feedbacks on the Tibetan Plateau Circulation

Author:

Talib Joshua1,Taylor Christopher M.12,Duan Anmin3,Turner Andrew G.45

Affiliation:

1. a U.K. Centre for Ecology and Hydrology, Wallingford, United Kingdom

2. b National Centre for Earth Observation, Wallingford, United Kingdom

3. c State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

4. d Department of Meteorology, University of Reading, Reading, United Kingdom

5. e National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Abstract

AbstractSubstantial intraseasonal precipitation variability is observed across the Tibetan Plateau (TP) during boreal summer associated with the subtropical jet location and the Silk Road pattern. Weather station data and satellite observations highlight a sensitivity of soil moisture and surface fluxes to this variability. During rain-free periods of two or more days, skin temperatures are shown to rise as the surface dries, signalling decreased evaporative fraction. Surface fluxes are further enhanced by relatively clear skies. In this study we use an atmospheric reanalysis to assess how this surface flux response across the TP influences local and remote conditions. Increased surface sensible heat flux induced by decreased soil moisture during a regional dry event leads to a deepening of the planetary boundary layer and the development of a heat low. Consistent with previous studies, heat low characteristics exhibit pronounced diurnal variability driven by anomalous daytime surface warming. For example, low-level horizontal winds are weakest during the afternoon and intensify overnight when boundary layer turbulence is minimal. The heat low favors an upper-tropospheric anticyclone that induces an upper-level Rossby wave and leads to negative upper-level temperature anomalies across southern China. The Rossby wave intensifies the upper-level cyclonic circulation across central China, while upper-level negative temperature anomalies across south China extend the west Pacific subtropical high westward. These circulation anomalies influence temperature and precipitation anomalies across much of China. The association between land–atmosphere interactions across the TP, large-scale atmospheric circulation characteristics, and precipitation in East Asia highlights the importance of intraseasonal soil moisture dynamics on the TP.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3