The Hybrid Kelvin–Edge Wave and Its Role in Tidal Dynamics

Author:

Ke Ziming1,Yankovsky Alexander E.2

Affiliation:

1. Marine Science Program, University of South Carolina, Columbia, South Carolina

2. Department of Earth and Ocean Sciences, University of South Carolina, Columbia, South Carolina

Abstract

Abstract A full set of long waves trapped in the coastal ocean over a variable topography includes a zero (fundamental) mode propagating with the coast on its right (left) in the Northern (Southern) Hemisphere. This zero mode resembles a Kelvin wave at lower frequencies and an edge wave (Stokes mode) at higher frequencies. At the intermediate frequencies this mode becomes a hybrid Kelvin–edge wave (HKEW), as both rotational effects and the variable depth become important. Furthermore, the group velocity of this hybrid mode becomes very small or even zero depending on shelf width. It is found that in midlatitudes a zero group velocity occurs at semidiurnal (tidal) frequencies over wide (∼300 km), gently sloping shelves. This notion motivated numerical experiments using the Regional Ocean Modeling System in which the incident HKEW with a semidiurnal period propagates over a wide shelf and encounters a narrowing shelf so that the group velocity becomes zero at some alongshore location. The numerical experiments have demonstrated that the wave energy increases upstream of this location as a result of the energy flux convergence while farther downstream the wave amplitude is substantially reduced. Instead of propagating alongshore, the wave energy radiates offshore in the form of Poincaré modes. Thus, it is concluded that the shelf areas where the group velocity of the HKEW becomes zero are characterized by an increased tidal amplitude and (consequently) high tidal energy dissipation, and by offshore wave energy radiation. This behavior is qualitatively consistent with the dynamics of semidiurnal tides on wide shelves narrowing in the direction of tidal wave propagation, including the Patagonia shelf and the South China Sea.

Publisher

American Meteorological Society

Subject

Oceanography

Reference21 articles.

1. Barotropic tide in the northeast South China Sea.;Beardsley;IEEE J. Oceanic Eng.,2004

2. Programs for computing properties of coastal-trapped waves and wind-driven motions over the continental shelf and slope.;Brink,1987

3. The tides of the northeast Atlantic Ocean.;Cartwright;Philos. Trans. Roy. Soc. London,1980

4. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model.;Chapman;J. Phys. Oceanogr.,1985

5. Coastal-trapped waves and tides at near-inertial frequencies.;Dale;J. Phys. Oceanogr.,2001

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3