Vertical Structure of Kelvin Waves in the Indonesian Throughflow Exit Passages

Author:

Drushka Kyla1,Sprintall Janet1,Gille Sarah T.1,Brodjonegoro Irsan2

Affiliation:

1. Scripps Institution of Oceanography, La Jolla, California

2. Bandung Institute of Technology, Bandung, Indonesia

Abstract

Abstract The subsurface structure of intraseasonal Kelvin waves in two Indonesian Throughflow (ITF) exit passages is observed and characterized using velocity and temperature data from the 2004–06 International Nusantara Stratification and Transport (INSTANT) project. Scatterometer winds are used to characterize forcing, and altimetric sea level anomaly (SLA) data are used to trace the pathways of Kelvin waves east from their generation region in the equatorial Indian Ocean to Sumatra, south along the Indonesian coast, and into the ITF region. During the 3-yr INSTANT period, 40 intraseasonal Kelvin waves forced by winds over the central equatorial Indian Ocean caused strong transport anomalies in the ITF outflow passages. Of these events, 21 are classed as “downwelling” Kelvin waves, forced by westerly winds and linked to depressions in the thermocline and warm temperature anomalies in the ITF outflow passages; 19 were “upwelling” Kelvin waves, generated by easterly wind events and linked to shoaling of the thermocline and cool temperature anomalies in the ITF. Both downwelling and upwelling Kelvin waves have similar vertical structures in the ITF outflow passages, with strong transport anomalies over all depths and a distinctive upward tilt to the phase that indicates downward energy propagation. A linear wind-forced model shows that the first two baroclinic modes account for most of the intraseasonal variance in the ITF outflow passages associated with Kelvin waves and highlights the importance of winds both in the eastern equatorial Indian Ocean and along the coast of Sumatra and Java for exciting Kelvin waves. Using SLA as a proxy for Kelvin wave energy shows that 37% ± 9% of the incoming Kelvin wave energy from the Indian Ocean bypasses the gap in the coastal waveguide at Lombok Strait and continues eastward. Of the energy that continues eastward downstream of Lombok Strait, the Kelvin waves are split by Sumba Island, with roughly equal energy going north and south to enter the Savu Sea.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3