Evaluating Polarimetric X-Band Radar Rainfall Estimators during HMT

Author:

Matrosov Sergey Y.1

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract Different relations between rainfall rate R and polarimetric X-band radar measurables were evaluated using the radar, disdrometer, and rain gauge measurements conducted during the 4-month-long field experiment. The specific differential phase shift KDP–based estimators generally show less scatter resulting from variability in raindrop size distributions than with the power-based relations. These estimators depend on model assumptions about the drop aspect ratios and are not applicable for lighter rainfalls. The polynomial approximation for the mean drop aspect ratio provides R–KDP relations that result overall in good agreement between the radar retrievals of rainfall accumulations and estimates from surface rain gauges. The accumulation data obtained from power estimators that use reflectivity Zeh and differential reflectivity ZDR measurements generally exhibit greater standard deviations with respect to the gauge measurements. Unlike the phase-based estimators, the power-based estimators have an advantage of being “point” measurements, thus providing continuous quantitative precipitation estimation (QPE) for the whole area of radar coverage. The uncertainty in the drop shape model can result in errors in the attenuation and differential attenuation correction procedures. These errors might provide biases of radar-derived QPE for the estimators that use power measurements. Overall, for all considered estimators, the radar-based total rainfall accumulations showed biases less than 10% (relative to gauges). The standard deviations of radar retrievals were about 23% for the mean Zeh–R relation, 17%–22% for the KDP-based estimators (depending on the drop shape model), and about 20%–32% for different Zeh–ZDR-based estimators. Comparing ZDR-based retrievals of mean mass raindrop size Dm (for Dm > 1 mm) with disdrometer-derived values reveals an about 20%–25% relative standard deviation between these two types of estimates.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3