Impacts of Beam Broadening and Earth Curvature on Storm-Scale 3D Variational Data Assimilation of Radial Velocity with Two Doppler Radars

Author:

Ge Guoqing1,Gao Jidong2,Brewster Keith2,Xue Ming1

Affiliation:

1. Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract The radar ray path and beam broadening equations are important for assimilation of radar data into numerical weather prediction (NWP) models. They can be used to determine the physical location of each radar measurement and to properly map the atmospheric state variables from the model grid to the radar measurement space as part of the forward observation operators. Historically, different degrees of approximations have been made with these equations; however, no systematic evaluation of their impact exists, at least in the context of variational data assimilation. This study examines the effects of simplifying ray path and ray broadening calculations on the radar data assimilation in a 3D variational data assimilation (3DVAR) system. Several groups of Observational System Simulation Experiments (OSSEs) are performed to test the impact of these equations to radar data assimilation with an idealized tornadic thunderstorm case. This study shows that the errors caused by simplifications vary with the distance between the analyzed storm and the radar. For single time level wind analysis, as the surface range increases, the impact of beam broadening on analyzed wind field becomes evident and can cause relatively large error for distances beyond 150 km. The impact of the earth’s curvature is more significant, even for distances beyond 60 km, because it places the data at the wrong vertical location. The impact of refractive index gradient is also tested. It is shown that the variations of refractive index gradient have a very small impact on the wind analysis results. Two time series of 1-h-long data assimilation experiments are further conducted to illustrate the impact of the beam broadening and earth curvature on all retrieved model variables. It is shown that all model variables can be retrieved to some degrees in all data assimilation experiments. Similar to the wind analysis experiments, the impacts of both factors are not obvious when radars are relatively close to the storm. When the radars are far from the storm (especially beyond 150 km), overlooking beam broadening degrades the accuracy of assimilation results slightly, whereas ignoring the earth’s curvature leads to significant errors.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3