Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event

Author:

Di Girolamo Paolo1,Summa Donato1,Ferretti Rossella2

Affiliation:

1. Dipartimento di Ingegneria e Fisica dell’Ambiente, Università degli Studi della Basilicata, Potenza, Italy

2. Dipartimento di Fisica-CETEMPS, Università degli Studi dell’Aquila, Coppito, L’Aquila, Italy

Abstract

Abstract The University of Basilicata Raman lidar system (BASIL) is operational in Potenza, Italy, and it is capable of performing high-resolution and accurate measurements of atmospheric temperature and water vapor based on the application of the rotational and vibrational Raman lidar techniques in the ultraviolet region. BASIL was recently involved in the 2005 International Lindenberg campaign for Assessment of Humidity and Cloud Profiling Systems and Its Impact on High-Resolution Modeling (LAUNCH 2005) experiment held from 12 September to 31 October 2005. A thorough description of the technical characteristics, measurement capabilities, and performances of BASIL is given in this paper. Measurements were continuously run between 1 and 3 October 2005, covering a dry stratospheric intrusion episode associated with a tropopause folding event. The measurements in this paper represent the first simultaneous Raman lidar measurements of atmospheric temperature, water vapor mixing ratio, and thus relative humidity reported for an extensive observation period (32 h). The use of water vapor to trace intruded stratospheric air allows the clear identification of a dry structure (∼1 km thick) originating in the stratosphere and descending in the free troposphere down to ∼3 km. A similar feature is present in the temperature field, with lower temperature values detected within the dry-air tongue. Relative humidity measurements reveal values as small as 0.5%–1% within the intruded air. The stratospheric origin of the observed dry layer has been verified by the application of a Lagrangian trajectory model. The subsidence of the intruding heavy dry air may be responsible for the gravity wave activity observed beneath the dry layer. Lidar measurements have been compared with the output of both the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and the European Centre for Medium-Range Weather Forecasts (ECMWF) global model. Comparisons in terms of water vapor reveal the capability of MM5 to reproduce the dynamical structures associated with the stratospheric intrusion episode and to simulate the deep penetration into the troposphere of the dry intruded layer. Moreover, lidar measurements of potential temperature are compared with MM5 output, whereas potential vorticities from both the ECMWF model and MM5 are compared with estimates obtained combining MM5 model vorticity and lidar measurements of potential temperature.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3