Inferring Convective Weather Characteristics with Geostationary High Spectral Resolution IR Window Measurements: A Look into the Future

Author:

Sieglaff Justin M.1,Schmit Timothy J.2,Menzel W. Paul1,Ackerman Steven A.1

Affiliation:

1. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

2. NOAA/NESDIS Center for Satellite Application and Research, Madison, Wisconsin

Abstract

Abstract A high spectral resolution geostationary sounder can make spectrally detailed measurements of the infrared spectrum at high temporal resolution, which provides unique information about the lower-tropospheric temperature and moisture structure. Within the infrared window region, many spectrally narrow, relatively weak water vapor absorption lines and one carbon dioxide absorption line exist. Frequent measurement of these absorption lines can provide critical information for monitoring the evolution of the lower-tropospheric thermodynamic state. This can improve short-term convective forecasts by monitoring regions of changing atmospheric stability. While providing valuable observations, the current geostationary sounders are spectrally broad and do not resolve the important spectrally narrow absorption lines needed to observe the planetary boundary layer. The usefulness of high spectral resolution measurements from polar-orbiting instruments has been shown in the literature, as has the usefulness of high temporal resolution measurements from geostationary instruments. Little attention has been given to the combination of high temporal along with high spectral resolution measurements. This paper demonstrates the potential utility of high temporal and high spectral resolution infrared radiances.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3