Microwave Radiometer Calibration on Decadal Time Scales Using On-Earth Brightness Temperature References: Application to the TOPEX Microwave Radiometer

Author:

Brown Shannon1,Desai Shailen1,Keihm Stephen1,Lu Wenwen1

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

Abstract A method is described to calibrate a satellite microwave radiometer operating near 18–37 GHz on decadal time scales for the purposes of climate studies. The method uses stable on-earth brightness temperature references over the full dynamic range of on-earth brightness temperatures to stabilize the radiometer calibration and is applied to the Ocean Topography Experiment (TOPEX) Microwave Radiometer (TMR). These references are a vicarious cold reference, which is a statistical lower bound on ocean surface brightness temperature, and heavily vegetated, pseudoblackbody regions in the Amazon rain forest. The sensitivity of the on-earth references to climate variability is assessed. No significant climate sensitivity is found in the cold reference, as it is not sensitive to a climate minimum (e.g., coldest sea surface temperature or driest atmosphere) but arises because of a minimum in the sea surface radio brightness that occurs in the middle of the climatic distribution of sea surface temperatures (SSTs). The hot reference is observed to have a small climate dependency, which is most evident during the 1997/98 El Niño event. A time-dependent model for the hot reference region is constructed using meteorological fields from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis product. This model is shown to accurately account for the small climate variations in this reference. In addition to the long-term stabilization of the brightness temperatures, an improvement to the TMR antenna pattern correction is described that removes residual geographically correlated errors, in particular errors correlated with distance to land or sea ice. The recalibrated TMR climate data record is cross-validated with the climate data record produced from the Special Sensor Microwave Imager (SSM/I). It is shown that the intersensor drift is small, providing realistic error bars for the climate trends generated from the instrument pair, as well as validating both the methodology described in this paper and the SSM/I climate data record.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference22 articles.

1. Determination of an Amazon hot reference target for the on-orbit calibration of microwave radiometers.;Brown;J. Atmos. Oceanic Technol.,2005

2. Brightness temperature and path delay correction for the TOPEX Microwave Radiometer yaw state bias.;Brown,2002

3. Jason microwave radiometer performance and on-orbit calibration.;Brown;Mar. Geod.,2004

4. On the long term stability of microwave radiometers using noise diodes for calibration.;Brown;IEEE Trans. Geosci. Remote Sens.,2007

5. Long-term stability of ERS-2 and TOPEX microwave radiometer in-flight calibration.;Eymard;IEEE Trans. Geosci. Remote Sens.,2005

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3