Water Mass Transformations in the Southern Ocean Diagnosed from Observations: Contrasting Effects of Air–Sea Fluxes and Diapycnal Mixing

Author:

Badin Gualtiero1,Williams Richard G.2,Jing Zhao3,Wu Lixin3

Affiliation:

1. Institute of Oceanography, University of Hamburg, Hamburg, Germany

2. School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom

3. Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Abstract

Abstract Transformation and formation rates of water masses in the Southern Ocean are estimated in a neutral-surface framework using air–sea fluxes of heat and freshwater together with in situ estimates of diapycnal mixing. The air–sea fluxes are taken from two different climatologies and a reanalysis dataset, while the diapycnal mixing is estimated from a mixing parameterization applied to five years of Argo float data. Air–sea fluxes lead to a large transformation directed toward lighter waters, typically from −45 to −63 Sv (1 Sv ≡ 106 m3 s−1) centered at γ = 27.2, while interior diapycnal mixing leads to two weaker peaks in transformation, directed toward denser waters, 8 Sv centered at γ = 27.8, and directed toward lighter waters, −16 Sv centered at γ = 28.3. Hence, air–sea fluxes and interior diapycnal mixing are important in transforming different water masses within the Southern Ocean. The transformation of dense to lighter waters by diapycnal mixing within the Southern Ocean is slightly larger, though comparable in magnitude, to the transformation of lighter to dense waters by air–sea fluxes in the North Atlantic. However, there are significant uncertainties in the authors' estimates with errors of at least ±5 W m−2 in air–sea fluxes, a factor 4 uncertainty in diapycnal mixing and limited coverage of air–sea fluxes in the high latitudes and Argo data in the Pacific. These water mass transformations partly relate to the circulation in density space: air–sea fluxes provide a general lightening along the core of the Antarctic Circumpolar Current and diapycnal diffusivity is enhanced at middepths along the current.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Water mass transformation and overturning circulation in the Arabian Gulf;Journal of Physical Oceanography;2021-09-30

2. Deep Water Masses of the South and North Atlantic;Bottom Gravity Currents and Overflows in Deep Channels of the Atlantic Ocean;2021

3. Interior Water-Mass Variability in the Southern Hemisphere Oceans during the Last Decade;Journal of Physical Oceanography;2020-02

4. Tracing the Imprint of River Runoff Variability on Arctic Water Mass Transformation;Journal of Geophysical Research: Oceans;2019-01

5. Spatial Distribution of Diffusivity Coefficients and the Effects on Water Mass Modification in the North Pacific;Journal of Geophysical Research: Oceans;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3