Near-Inertial Waves in Strongly Baroclinic Currents

Author:

Whitt Daniel B.1,Thomas Leif N.1

Affiliation:

1. Environmental Earth System Science Department, Stanford University, Stanford, California

Abstract

Abstract An analysis and physical interpretation of near-inertial waves (NIWs) propagating perpendicular to a steady, two-dimensional, strongly baroclinic, geostrophic current are presented. The analysis is appropriate for geostrophic currents with order-one Richardson numbers such as those associated with fronts experiencing strong, wintertime atmospheric forcing. This work highlights the underlying physics behind the properties of the NIWs using parcel arguments and the principles of conservation of density and absolute momentum. Baroclinicity introduces lateral gradients in density and vertical gradients in absolute momentum that significantly modify the dispersion and polarization relations and propagation of NIWs relative to classical internal wave theory. In particular, oscillations at the minimum frequency are not horizontal but, instead, are slanted along isopycnals. Furthermore, the polarization of the horizontal velocity is not necessarily circular at the minimum frequency and the spiraling of the wave’s velocity vector with time and depth can be in the opposite direction from that predicted by classical theory. Ray tracing and numerical solutions illustrate the trapping and amplification of NIWs in regions of strong baroclinicity where the wave frequency is lower than the effective Coriolis frequency. The largest amplification is found at slantwise critical layers that align with the tilted isopycnals of the current. Such slantwise critical layers are seen in wintertime observations of the Gulf Stream and, consistent with the theory, coincide with regions of intensified ageostrophic shear characterized by a banded structure that is spatially coherent along isopycnals.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3