Shear at the Base of the Oceanic Mixed Layer Generated by Wind Shear Alignment

Author:

Brannigan Liam1,Lenn Yueng-Djern2,Rippeth Tom P.2,McDonagh Elaine3,Chereskin Teresa K.4,Sprintall Janet4

Affiliation:

1. School of Ocean Sciences, Bangor University, Menai Bridge, Wales, and Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

2. School of Ocean Sciences, Bangor University, Menai Bridge, Wales, United Kingdom

3. National Oceanography Centre, Southampton, United Kingdom

4. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract Observations are used to evaluate a simple theoretical model for the generation of near-inertial shear spikes at the base of the open ocean mixed layer when the upper ocean displays a two-layer structure. The model predicts that large changes in shear squared can be produced by the alignment of the wind and shear vectors. A climatology of stratification and shear variance in Drake Passage is presented, which shows that these assumptions are most applicable to summer, fall, and spring but are not highly applicable to winter. Temperature, salinity, and velocity data from a high spatial resolution cruise in Drake Passage show that the model does not predict all large changes in shear variance; the model is most effective at predicting changes in shear squared when it arises owing to near-inertial wind-driven currents without requiring a rotating resonant wind stress. The model is also more effective where there is a uniform mixed layer above a strongly stratified transition layer. Rotary spectral and statistical analysis of an additional 242 Drake Passage transects from 1999 to 2011 confirmed the presence of this shear-spiking mechanism, particularly in summer, spring, and fall when stratification is stronger.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3