Warm Season Lightning Probability Prediction for Canada and the Northern United States

Author:

Burrows William R.1,Price Colin2,Wilson Laurence J.3

Affiliation:

1. Meteorological Research Branch, Meteorological Service of Canada, Downsview, Ontario, Canada

2. Department of Geophysics and Planetary Sciences, Tel Aviv University, Tel Aviv, Israel

3. Meteorological Research Branch, Meteorological Service of Canada, Dorval, Québec, Canada

Abstract

Abstract Statistical models valid May–September were developed to predict the probability of lightning in 3-h intervals using observations from the North American Lightning Detection Network and predictors derived from Global Environmental Multiscale (GEM) model output at the Canadian Meteorological Centre. Models were built with pooled data from the years 2000–01 using tree-structured regression. Error reduction by most models was about 0.4–0.7 of initial predictand variance. Many predictors were required to model lightning occurrence for this large area. Highest ranked overall were the Showalter index, mean sea level pressure, and troposphere precipitable water. Three-hour changes of 500-hPa geopotential height, 500–1000-hPa thickness, and MSL pressure were highly ranked in most areas. The 3-h average of most predictors was more important than the mean or maximum (minimum where appropriate). Several predictors outranked CAPE, indicating it must appear with other predictors for successful statistical lightning prediction models. Results presented herein demonstrate that tree-structured regression is a viable method for building statistical models to forecast lightning probability. Real-time forecasts in 3-h intervals to 45–48 h were made in 2003 and 2004. The 2003 verification suggests a hybrid forecast based on a mixture of maximum and mean forecast probabilities in a radius around a grid point and on monthly climatology will improve accuracy. The 2004 verification shows that the hybrid forecasts had positive skill with respect to a reference forecast and performed better than forecasts defined by either the mean or maximum probability at most times. This was achieved even though an increase of resolution and change of convective parameterization scheme were made to the GEM model in May 2004.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

1. Observations and Theory of Weather Systems.;Bluestein,1993

2. Classification and Regression Trees.;Brieman,1984

3. Verification of forecasts expressed in terms of probability.;Brier;Mon. Wea. Rev.,1950

4. On the use of time-offset model output statistics for production of surface wind forecasts.;Burrows;Mon. Wea. Rev.,1985

5. CART regression models for predicting UV radiation at the ground in the presence of cloud and other environmental factors.;Burrows;J. Appl. Meteor.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3