Affiliation:
1. Department of Meteorology, Stockholm University, Stockholm, Sweden
Abstract
Abstract
The response of the atmospheric circulation to an enhanced radiative greenhouse gas forcing is investigated. It has been proposed that the response of the climate system to an enhanced forcing projects directly onto the preexisting natural modes of variability. An evaluation of this possibility and in particular of the implications of unchanged flow regimes is performed with a focus on the Southern Hemisphere extratropical atmospheric circulation. Low-pass-filtered mean sea level pressure and geopotential height at 500 and 200 hPa from a transient integration with a coupled global climate model is used.
The response to an enhanced forcing projects strongly onto the leading modes of present-day variability, in agreement with other studies. However, the spatial patterns of the leading modes are changed in response to enhanced forcing. The first and second modes of interweekly variability are the Pacific–South American modes, zonal wavenumber-3 wave trains from the central Pacific to the southern Atlantic. In response to the enhanced forcing, the spatial patterns of these modes change, and the wave train extends along a circumpolar path with amplitude also in the Eastern Hemisphere. This change in the spatial patterns is associated with a strengthening of the waveguide for barotropic Rossby waves.
Publisher
American Meteorological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献