Integrating NWP Forecasts and Observation Data to Improve Nowcasting Accuracy

Author:

Huang Laura X.1,Isaac George A.1,Sheng Grant2

Affiliation:

1. Cloud Physics and Severe Weather Research Section, Environment Canada, Toronto, Ontario, Canada

2. Faculty of Environmental Studies, York University, Toronto, Ontario, Canada

Abstract

Abstract This study addresses the issue of improving nowcasting accuracy by integrating several numerical weather prediction (NWP) model forecasts with observation data. To derive the best algorithms for generating integrated forecasts, different integration methods were applied starting with integrating the NWP models using equal weighting. Various refinements are then successively applied including dynamic weighting, variational bias correction, adjusted dynamic weighting, and constraints using current observation data. Three NWP models—the Canadian Global Environmental Multiscale (GEM) regional model, the GEM Limited Area Model (LAM), and the American Rapid Update Cycle (RUC) model—are used to generate the integrated forecasts. Verification is performed at two Canadian airport locations [Toronto International Airport (CYYZ), in Ontario, and Vancouver International Airport (CYVR), in British Columbia] over the winter and summer seasons. The results from the verification for four weather variables (temperature, relative humidity, and wind speed and gust) clearly show that the integrated models with new refinements almost always perform better than each of the NWP models individually and collectively. When the integrated model with innovative dynamic weighting and variational bias correction is further updated with the most current observation data, its performance is the best among all models, for all the selected variables regardless of location and season. The results of this study justify the use of integrated NWP forecasts for nowcasting provided they are properly integrated using appropriate and specifically designed rules and algorithms.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3