Affiliation:
1. National Center for Atmospheric Research,# Boulder, Colorado
Abstract
Abstract
A forecaster-interactive capability was added to an automated convective storm nowcasting system [Auto-Nowcaster (ANC)] to allow forecasters to enhance the performance of 1-h nowcasts of convective storm initiation and evolution produced every 6 min. This Forecaster-Over-The-Loop (FOTL-ANC) system was tested at the National Weather Service Fort Worth–Dallas, Texas, Weather Forecast Office during daily operations from 2005 to 2010. The forecaster’s role was to enter the locations of surface convergence boundaries into the ANC prior to dissemination of nowcasts to the Center Weather Service Unit. Verification of the FOTL-ANC versus ANC (no human) nowcasts was conducted on the convective scale. Categorical verification scores were computed for 30 subdomains within the forecast domain. Special focus was placed on subdomains that included convergence boundaries for evaluation of forecaster involvement and impact on the FOTL-ANC nowcasts. The probability of detection of convective storms increased by 20%–60% with little to no change observed in the false-alarm ratios. Bias values increased from 0.8–1.0 to 1.0–3.0 with human involvement. The accuracy of storm nowcasts notably improved with forecaster involvement; critical success index (CSI) values increased from 0.15–0.25 (ANC) to 0.2–0.4 (FOTL-ANC). Over short time periods, CSI values as large as 0.6 were also observed. This study demonstrated definitively that forecaster involvement led to positive improvement in the nowcasts in most cases while causing no degradation in other cases; a few exceptions are noted. Results show that forecasters can play an important role in the production of rapidly updated, convective storm nowcasts for end users.
Publisher
American Meteorological Society
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献