The Heat Is On: Observations and Trends of Heat Stress Metrics during Florida Summers

Author:

McAllister Caitlyn1ORCID,Stephens Aaron1,Milrad Shawn M.1

Affiliation:

1. a Meteorology Program, Applied Aviation Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida

Abstract

Abstract Extreme heat is annually the deadliest weather hazard in the United States and is strongly amplified by climate change. In Florida, summer heat waves have increased in frequency and duration, exacerbating negative human health impacts on a state with a substantial older population and industries (e.g., agriculture) that require frequent outdoor work. However, the combined impacts of temperature and humidity (heat stress) have not been previously investigated. For eight Florida cities, this study constructs summer climatologies and trend analyses (1950–2020) of two heat stress metrics: heat index (HI) and wet-bulb globe temperature (WBGT). While both incorporate temperature and humidity, WBGT also includes wind and solar radiation and is a more comprehensive measure of heat stress on the human body. With minor exceptions, results show increases in average summer daily maximum, mean, and minimum HI and WBGT throughout Florida. Daily minimum HI and WBGT exhibit statistically significant increases at all eight stations, emphasizing a hazardous rise in nighttime heat stress. Corresponding to other recent studies, HI and WBGT increases are largest in coastal subtropical locations in central and southern Florida (i.e., Daytona Beach, Tampa, Miami, and Key West) but exhibit no conclusive relationship with urbanization changes. Danger (103°–124°F; 39.4°–51.1°C) HI and high (>88°F; 31.1°C) WBGT summer days exhibit significant frequency increases across the state. Especially at coastal locations in the Florida Peninsula and Keys, danger HI and high WBGT days now account for >20% of total summer days, emphasizing a substantial escalation in heat stress, particularly since 2000. Significance Statement Extreme heat is the deadliest U.S. weather hazard. Although Florida is known for its warm and humid climate, it is not immune from heat stress (combined temperature and humidity) impacts on human health, particularly given its older population and prevalence of outdoor (e.g., agriculture) work. We analyze summer trends in two heat stress metrics at eight Florida cities since 1950. Results show that heat stress is increasing significantly, particularly at coastal locations in central and southern Florida and at night. The number of dangerous heat stress days per summer is also increasing across Florida, especially since 2000. Our analysis emphasizes that despite some acclimation, Florida is still susceptible to a serious escalation in extreme heat as the climate warms.

Funder

embry-riddle aeronautical university

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference66 articles.

1. Investigating the role of the relative humidity in the occurrence of temperature and heat stress extremes in CMIP5 projections;Brouillet, A.,2019

2. Wet-bulb globe temperature (WBGT)—Its history and its limitations;Budd, G. M.,2008

3. Southeast;Carter, L.,2018

4. Heatwaves in Florida: Climatology, trends, and related precipitation events;Cloutier-Bisbee, S. R.,2019

5. U.S. Climate Reference Network after one decade of operations;Diamond, H. J.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3