Defining Homogeneous Drought Zones Based on Soil Moisture across Japan and Teleconnections with Large-Scale Climate Signals

Author:

Abstract

Abstract Droughts are widespread disasters worldwide and are concurrently influenced by multiple large-scale climate signals. This is particularly true over Japan, where drought has strong heterogeneity due to multiple factors such as monsoon, topography, and ocean circulations. Regional heterogeneity poses challenges for drought prediction and management. To overcome this difficulty, this study provides a comprehensive analysis of teleconnection between climate signals and homogeneous drought zones over Japan. First, droughts are characterized by simulated soil moisture from a land surface model during 1958–2012. The Mclust toolkit, distinct empirical orthogonal function, and wavelet coherence analysis are used, respectively, to investigate the homogeneous drought zone, principal component of each homogeneous zone, and teleconnection between climate signals and drought. Results indicate that nine homogeneous drought zones with different characteristics are defined and quantified. Among these nine zones, zone 1 is dominated by extreme drought events. Zones 2 and 6 are typical representatives of spring droughts, whereas zone 7 is wet for most of the period. The Hokkaido region is divided into wetter zone 4 and drier zone 9. Zones 3, 5, and 8 are distinguished by the topography. The analyses also reveal almost all nine zones have a high level of homogeneity, with more than 60% explained variance. Also, these nine zones are dominated by different large-scale climate signals: the Arctic Oscillation has the strongest impact on zones 1, 7, and 8; the influence of the North Atlantic Oscillation on zones 3, 4, and 6 is significant; zones 2 and 9 are both dominated by the Pacific decadal oscillation; and El Niño–Southern Oscillation dominates zone 5. The results will be valuable for drought management and drought prevention.

Funder

grant-in-aid for scientific research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3