Affiliation:
1. a Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
2. b Centre for Crisis Studies and Mitigation, University of Manchester, Manchester, United Kingdom
Abstract
AbstractA study of 500-hPa cutoff lows in central Chile during 1979–2017 was conducted to contrast cutoff lows associated with the lowest quartile of daily precipitation amounts (LOW25) with cutoff lows associated with the highest quartile (HIGH25). To understand the differences between low- and high-precipitation cutoff lows, daily precipitation records, radiosonde observations, and reanalyses were used to analyze the three ingredients necessary for deep moist convection (instability, lift, and moisture) at the eastern and equatorial edge of these lows. Instability was generally small, if any, and showed no major differences between LOW25 and HIGH25 events. Synoptic-scale ascent associated with Q-vector convergence also showed little difference between LOW25 and HIGH25 events. In contrast, the moisture distribution around LOW25 and HIGH25 cutoff lows was different, with a moisture plume that was more defined and more intense equatorward of HIGH25 cutoff lows as compared with LOW25 cutoff lows where the moisture plume occurred poleward of the cutoff low. The presence of the moisture plume equatorward of HIGH25 cutoff lows may have contributed to the shorter persistence of HIGH25 events by providing a source for latent-heat release when the moisture plume reached the windward side of the Andes. Indeed, whereas 48% of LOW25 cutoff lows persisted for longer than 72 h, only 25% of HIGH25 cutoff lows did, despite both systems occurring mostly during the rainy season (May–September). The occurrence of an equatorial moisture plume on the eastern and equatorial edge of cutoff lows is fairly common during high-impact precipitation events, and this mechanism could help to explain high-impact precipitation where the occurrence of cutoff lows and moisture plumes is frequent.
Publisher
American Meteorological Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献