Role of Advection on the Evolution of Near-Surface Temperature and Wind in Urban-Aware Simulations

Author:

Ray Pallav1,Tan Haochen1,Tewari Mukul2,Brownlee James1,Ajayamohan R. S.3,Barrett Bradford S.4

Affiliation:

1. a Meteorology Program, Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida

2. b IBM T. J. Watson Research Center, Yorktown Heights, New York

3. c Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

4. d U.S. Naval Academy, Annapolis, Maryland

Abstract

AbstractThe role of advection of heat and momentum on the evolution of near-surface temperature and wind is evaluated in urban-aware simulations over Houston, Texas, under dry conditions on a light-wind day. Two sets of experiments, each consisting of four simulations using different planetary boundary layer (PBL) schemes, were conducted over 48 h using the default urban scheme (BULK) and the single-layer urban canopy model (SLUCM) available within the Weather Research and Forecasting Model. We focus on understanding and quantifying the role played by temperature and momentum advection, particularly on the windward and leeward sides of the city. Previous studies have largely ignored any quantitative analysis of impacts from the advection of momentum over an urban area. The horizontal advection of temperature was found to be more important in the BULK because of the larger surface temperature gradient caused by warmer surface temperatures over urban areas than in the SLUCM. An analysis of the momentum budget shows that horizontal advection of zonal and meridional momentum plays a prominent role during the period of peak near-surface winds and that this effect is more pronounced in the windward side of the city. The local tendency in peak winds in the leeward side lags that in the windward side by about 1–2 h, similar to the lag found in horizontal momentum advection. The sensitivity of the results to different urban and PBL schemes was explored. The results imply that representation and influence of land-use patterns via sophisticated urban parameterizations generate locally driven winds that best resemble observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3