Affiliation:
1. National Center for Atmospheric Research, Boulder, Colorado, USA
2. Flight Technologies and Procedures Division, Federal Aviation Administration
3. Weather Technology in the Cockpit Program, Federal Aviation Administration
Abstract
AbstractTakeoff and landing maneuvers can be particularly hazardous at airports surrounded by complex terrain. To address this, the Federal Aviation Administration has developed a Precipitous Terrain classification, as a way to impose more restrictive terrain clearances in the vicinity of complex terrain and to mitigate possible altimeter errors and pilot control problems experienced while executing instrument approach procedures. The current Precipitous Point Value (PPV) algorithm relies on the terrain characteristics within a local area of 2 NM, and is therefore static in time. In this work, we investigate the role of meteorological effects leading to potential aviation hazards over complex terrain, namely turbulence, altimeter setting errors and density altitude deviations. To that end, we combine observations with high-resolution numerical weather forecasts within a 2° × 2° region over the Rocky Mountains in Colorado, containing three airports that are surrounded by Precipitous Terrain. Both available turbulence reports and model’s turbulence forecasts show little correlation with the PPV algorithm for the region analyzed, indicating that the static terrain characteristics cannot generally be used to reliably capture hazardous low-level turbulence events. Altimeter setting errors and density altitude effects are also found to be only very weakly correlated with the PPV algorithm. Altimeter setting errors contribute to hazardous conditions mainly during cold seasons, driven by synoptic weather systems, while density altitude effects are on the contrary predominantly present during the spring and summer months, and follow a very well-marked diurnal evolution modulated by surface radiative effects. These findings demonstrate the effectiveness of high-resolution weather forecast information in determining aviation-relevant hazardous conditions over complex terrain.
Publisher
American Meteorological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献