Revisiting the Precipitous Terrain Classification from a Meteorological Perspective

Author:

Muñoz-Esparza Domingo1,Shin Hyeyum Hailey1,Keller Teddie L.1,Ikeda Kyoko1,Sharman Robert D.1,Steiner Matthias1,Rawdon Jeff2,Pokodner Gary3

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado, USA

2. Flight Technologies and Procedures Division, Federal Aviation Administration

3. Weather Technology in the Cockpit Program, Federal Aviation Administration

Abstract

AbstractTakeoff and landing maneuvers can be particularly hazardous at airports surrounded by complex terrain. To address this, the Federal Aviation Administration has developed a Precipitous Terrain classification, as a way to impose more restrictive terrain clearances in the vicinity of complex terrain and to mitigate possible altimeter errors and pilot control problems experienced while executing instrument approach procedures. The current Precipitous Point Value (PPV) algorithm relies on the terrain characteristics within a local area of 2 NM, and is therefore static in time. In this work, we investigate the role of meteorological effects leading to potential aviation hazards over complex terrain, namely turbulence, altimeter setting errors and density altitude deviations. To that end, we combine observations with high-resolution numerical weather forecasts within a 2° × 2° region over the Rocky Mountains in Colorado, containing three airports that are surrounded by Precipitous Terrain. Both available turbulence reports and model’s turbulence forecasts show little correlation with the PPV algorithm for the region analyzed, indicating that the static terrain characteristics cannot generally be used to reliably capture hazardous low-level turbulence events. Altimeter setting errors and density altitude effects are also found to be only very weakly correlated with the PPV algorithm. Altimeter setting errors contribute to hazardous conditions mainly during cold seasons, driven by synoptic weather systems, while density altitude effects are on the contrary predominantly present during the spring and summer months, and follow a very well-marked diurnal evolution modulated by surface radiative effects. These findings demonstrate the effectiveness of high-resolution weather forecast information in determining aviation-relevant hazardous conditions over complex terrain.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3