Dynamically Downscaled Projections of Phenological Changes across the Contiguous United States

Author:

Mallard Megan S.1ORCID,Talgo Kevin D.2,Spero Tanya L.1,Bowden Jared H.3,Nolte Christopher G.1

Affiliation:

1. a Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

2. b General Dynamics Information Technology, Inc., Durham, North Carolina

3. c Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina

Abstract

Abstract Phenological indicators (PI) are used to study changes to animal and plant behavior in response to seasonal cycles, and they can be useful to quantify the potential impacts of climate change on ecosystems. Here, multiple global climate models and emission scenarios are used to drive dynamically downscaled simulations using the WRF Model over the contiguous United States (CONUS). The wintertime dormancy of plants [chilling units (CU)], timing of spring onset [extended spring indices (SI)], and frequency of proceeding false springs are calculated from regional climate simulations covering historical (1995–2005) and future periods (2025–2100). Southern parts of the CONUS show projected CU decreases (inhibiting some plants from flowering or fruiting), while the northern CONUS experiences an increase (possibly causing plants to break dormancy too early, becoming vulnerable to disease or freezing). Spring advancement (earlier SI dates) is projected, with decadal trends ranging from approximately 1–4 days per decade over the CONUS, comparable to or exceeding those found in observational studies. Projected changes in risk of false spring (hard freezes following spring onset) vary across members of the ensemble and regions of the CONUS, but generally western parts of the CONUS are projected to experience increased risk of false springs. These projected changes to PI connote significant effects on cycles of plants, animals, and ecosystems, highlighting the importance of examining temperature changes during transitional seasons. Significance Statement This study examines how phenological indicators, which track the life cycles of plants and animals, could change from 2025 to 2100 as simulated in a regional climate model over the contiguous United States. Chilling units quantify the presence of cooler weather that can benefit plants prior to their growing season. They are projected to decrease in the southern United States, possibly inhibiting agricultural production. Spring onset is projected to occur earlier in the year, advancing by 1–4 days on average over each future decade. Risk of false springs (damaging hard freezes after spring onset) increases in the western United States. Our findings highlight the need to understand effects of climate change during transitional seasons, which can impact agriculture and ecosystems.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference72 articles.

1. Spring plant phenology and false springs in the conterminous US during the 21st century;Allstadt, A. J.,2015

2. The false spring of 2012, earliest in North American record;Ault, T. R.,2013

3. A Matlab© toolbox for calculating spring indices from daily meteorological data;Ault, T. R.,2015

4. Examining interior grid nudging techniques using two-way nesting in the WRF Model for regional climate modeling;Bowden, J. H.,2012

5. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology;Bowden, J. H.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3