A Dual-Frequency Radar Retrieval of Two Parameters of the Snowfall Particle Size Distribution Using a Neural Network

Author:

Chase Randy J.1,Nesbitt Stephen W.1,McFarquhar Greg M.23

Affiliation:

1. a Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

2. b Cooperative Institute of Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

3. c School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

AbstractWith the launch of the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR) in 2014, renewed interest in retrievals of snowfall in the atmospheric column has occurred. The current operational GPM-DPR retrieval largely underestimates surface snowfall accumulation. Here, a neural network (NN) trained on data that are synthetically derived from state-of-the-art ice particle scattering models and measured in situ particle size distributions (PSDs) is used to retrieve two parameters of the PSD: liquid equivalent mass-weighted mean diameter and the liquid equivalent normalized intercept parameter . Evaluations against a test dataset showed statistically significantly improved ice water content (IWC) retrievals relative to a standard power-law approach and an estimate of the current GPM-DPR algorithm. Furthermore, estimated median percent errors (MPE) on the test dataset were −0.7%, +2.6%, and +1% for , , and IWC, respectively. An evaluation on three case studies with collocated radar observations and in situ microphysical data shows that the NN retrieval has MPE of −13%, +120%, and +10% for , , and IWC, respectively. The NN retrieval applied directly to GPM-DPR data provides improved snowfall retrievals relative to the default algorithm, removing the default algorithm’s ray-to-ray instabilities and recreating the high-resolution radar retrieval results to within 15% MPE. Future work should aim to improve the retrieval by including PSD data collected in more diverse conditions and rimed particles. Furthermore, different desired outputs such as the PSD shape parameter and snowfall rate could be included in future iterations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3