Affiliation:
1. a National Center for Atmospheric Research, Boulder, Colorado
Abstract
Abstract
Simulations of Chesapeake Bay breezes are performed with varying water surface temperature (WST) datasets and formulations for the diurnal cycle of WST to determine whether more accurate depictions of water surface temperature improve prediction of bay breezes. The accuracy of simulations is measured against observed WST, inland wind speed and temperature, and in simulations’ ability to detect bay breezes via a detection algorithm developed for numerical model output. Missing WST data are found to be problematic within the Weather Research and Forecasting (WRF) Model framework, especially when activating the prognostic equation for skin temperature, sst_skin. This is alleviated when filling all missing WST values with skin temperature values within the initial and boundary conditions. Performance of bay-breeze prediction is shown to be somewhat associated with the resolution of the WST dataset. Further, model performance in simulating WST as well as in simulating the Chesapeake Bay breeze is improved when diurnal fluctuations of WST are considered via the sst skin option. Prior to running simulations, model performance in simulating the bay breeze can be accurately predicted through the use of a simple formulation.
Funder
U.S. Army Test and Evaluation Command
Publisher
American Meteorological Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献