Simulating the Chesapeake Bay Breeze: Sensitivities to Water Surface Temperature

Author:

Hawbecker Patrick1ORCID,Knievel Jason C.1

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Simulations of Chesapeake Bay breezes are performed with varying water surface temperature (WST) datasets and formulations for the diurnal cycle of WST to determine whether more accurate depictions of water surface temperature improve prediction of bay breezes. The accuracy of simulations is measured against observed WST, inland wind speed and temperature, and in simulations’ ability to detect bay breezes via a detection algorithm developed for numerical model output. Missing WST data are found to be problematic within the Weather Research and Forecasting (WRF) Model framework, especially when activating the prognostic equation for skin temperature, sst_skin. This is alleviated when filling all missing WST values with skin temperature values within the initial and boundary conditions. Performance of bay-breeze prediction is shown to be somewhat associated with the resolution of the WST dataset. Further, model performance in simulating WST as well as in simulating the Chesapeake Bay breeze is improved when diurnal fluctuations of WST are considered via the sst skin option. Prior to running simulations, model performance in simulating the bay breeze can be accurately predicted through the use of a simple formulation.

Funder

U.S. Army Test and Evaluation Command

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

1. The effect of water surface temperature on lake breezes and thermal internal boundary layers;Arritt, R. W.,1987

2. Effects of the large-scale flow on characteristic features of the sea breeze;Arritt, R. W.,1993

3. Development of selection algorithms and databases for sea breeze studies;Azorin-Molina, C.,2011

4. A lake breeze index;Biggs, W. G.,1962

5. GHRSST Level 4 CMC0.1deg global foundation sea surface temperature analysis (GDS version 2),2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3