Climate Dynamics Preceding Summer Forest Fires in California and the Extreme Case of 2018

Author:

Jacobson Tess W. P.12,Seager Richard1,Williams A. Park3,Henderson Naomi1

Affiliation:

1. a Lamont-Doherty Earth Observatory, Palisades, New York

2. b Department of Earth and Environmental Sciences, Columbia University, New York, New York

3. c Department of Geography, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract Recent record-breaking wildfire seasons in California prompt an investigation into the climate patterns that typically precede anomalous summer burned forest area. Using burned-area data from the U.S. Forest Service’s Monitoring Trends in Burn Severity (MTBS) product and climate data from the fifth major global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5) over 1984–2018, relationships between the interannual variability of antecedent climate anomalies and July California burned area are spatially and temporally characterized. Lag correlations show that antecedent high vapor pressure deficit (VPD), high temperatures, frequent extreme high temperature days, low precipitation, high subsidence, high geopotential height, low soil moisture, and low snowpack and snowmelt anomalies all correlate significantly with July California burned area as far back as the January before the fire season. Seasonal regression maps indicate that a global midlatitude atmospheric wave train in late winter is associated with anomalous July California burned area. July 2018, a year with especially high burned area, was to some extent consistent with the general patterns revealed by the regressions: low winter precipitation and high spring VPD preceded the extreme burned area. However, geopotential height anomaly patterns were distinct from those in the regressions. Extreme July heat likely contributed to the extent of the fires ignited that month, even though extreme July temperatures do not historically significantly correlate with July burned area. While the 2018 antecedent climate conditions were typical of a high-burned-area year, they were not extreme, demonstrating the likely limits of statistical prediction of extreme fire seasons and the need for individual case studies of extreme years. Significance Statement The purpose of this study is to identify the local and global climate patterns in the preceding seasons that influence how the burned summer forest area in California varies year-to-year. We find that a dry atmosphere, high temperatures, dry soils, less snowpack, low precipitation, subsiding air, and high pressure centered west of California all correlate significantly with large summer burned area as far back as the preceding January. These climate anomalies occur as part of a hemispheric scale pattern with weak connections to the tropical Pacific Ocean. We also describe the climate anomalies preceding the extreme and record-breaking burned-area year of 2018, and how these compared with the more general patterns found. These results give important insight into how well and how early it might be possible to predict the severity of an upcoming summer wildfire season in California.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference45 articles.

1. Development of gridded surface meteorological data for ecological applications and modelling;Abatzoglou, J. T.,2013

2. Relationships between climate and macroscale area burned in the western United States;Abatzoglou, J. T.,2013

3. Impact of anthropogenic climate change on wildfire across western US forests;Abatzoglou, J. T.,2016

4. Global emergence of anthropogenic climate change in fire weather indices;Abatzoglou, J. T.,2019

5. The use of fire by Native Americans in California;Anderson, M.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3